
	 	



AWS	Fundamentals

AWS	for	the	Real	World	-	Not	Just	for	Certifications

Preview	Edition	-	Lambda	only

Tobias	Schmidt

Alessandro	Volpicella

15.01.23 	 2	of	464



Table	of	Contents

Introduction

About	the	Scope	of	This	Book

Why	Did	We	Bother	to	Write	This?

Who	Is	This	Book	For

Who	Is	This	Book	Not	For

Getting	Started

Creating	Your	Own	AWS	Account

Account	Security	Key	Concepts	and	Best	Practices

Avoiding	Cost	Surprises

Understanding	the	Shared	Responsibility	Model

About	going	Serverless	and	Cloud-Native

AWS	Core	Building	Blocks	for	all	Applications

AWS	IAM	for	Controlling	Access	to	Your	Account	and	Its	Resources

Compute

Launching	Virtual	Machines	in	the	Cloud	for	Any	Workload	with	EC2

Running	and	Orchestrating	Containers	with	ECS	and	Fargate

Using	Lambda	to	Run	Code	without	Worrying	about	Infrastructure

Database	&	Storage

Fully-Managed	SQL	Databases	with	RDS

Building	Highly-Scalable	Applications	in	a	True	Serverless	Way	With	DynamoDB

S3	Is	a	Secure	and	Highly	Available	Object	Storage

Messaging

Using	Message	Queues	with	SQS

SNS	to	Build	Highly-Scalable	Pub/Sub	Systems

Building	an	Event-Driven	Architecture	with	AWS	EventBridge

Networking

Exposing	Your	Application’s	Endpoints	to	the	Internet	via	API	Gateway

Making	Your	Applications	Highly	Available	with	Route	53

Isolating	and	Securing	Your	Instances	and	Resources	with	VPC

Using	CloudFront	to	Distribute	Your	Content	around	the	Globe

Continuous	Integration	&	Delivery

Creating	a	Reliable	Continuous	Delivery	Process	with	CodeBuild	&	CodePipeline

15.01.23 	 3	of	464



Observability

Observing	All	Your	AWS	Services	with	CloudWatch

Define	&	Deploy	Your	Cloud	Infrastructure	with	Infrastructure-As-Code

CloudFormation	Is	the	Underlying	Service	for	Provisioning	Your	Infrastructure

Using	Your	Favorite	Programming	Language	with	CDK	to	Build	Cloud	Apps

Leveraging	the	Serverless	Framework	to	Build	Lambda-Powered	Apps	in	Minutes

Credits	&	Acknowledgements

About	the	Authors

15.01.23 	 4	of	464



Introduction

With	this	book,	we	hope	to	get	you	a	deeper	understanding	of	AWS,	beyond	just	passing

fundamental	certifications.	It	covers	a	wide	range	of	services,	including	EC2,	S3,	RDS,

DynamoDB,	Lambda,	and	many	more,	and	provides	practical	examples	and	implicit	use	cases

for	each	one.	The	book	is	designed	to	be	a	hands-on	resource,	with	step-by-step	instructions

and	detailed	explanations	to	help	you	understand	how	to	use	AWS	in	real-world	scenarios.

Whether	you're	a	developer,	system	administrator,	or	even	an	engineering	manager,	this	book

will	provide	you	with	the	fundamental	knowledge	you	need	to	successfully	build	and	deploy

applications	on	AWS.

15.01.23 	 5	of	464



About	the	Scope	of	This	Book

This	book	is	all	about	the	fundamentals	of	AWS.	The	goal	is	to	get	you	started	on	how	to	use

AWS	in	the	real	world.

First,	we’ll	show	you	how	to	create	your	first	AWS	Account,	how	to	set	up	your	root	users,	and

how	to	make	sure	you	will	receive	billing	alerts.

The	next	part	covers	the	most	important	AWS	services.	AWS	consists	of	more	than	255

services.	We	picked	out	the	services	that	you	will	use	in	almost	any	cloud	application.	Example

services	are	Elastic	Container	Service	(ECS),	Lambda,	Simple	Queue	Service	(SQS),	Simple

Notification	Service	(SNS),	EventBridge,	and	many	more.	We	dive	deep	into	these	services	and

give	you	recommendations	for	the	best	configuration	options,	jump	into	use	cases	and	provide

you	a	list	of	tips	and	tricks	and	things	to	remember.

In	the	last	part,	we	give	you	an	introduction	to	Infrastructure	as	Code.	We	want	you	to

understand	the	differences	between	various	frameworks.	For	that,	we’ve	created	a	brief

introduction	and	history	lesson	on	IaC.	CloudFormation,	Serverless,	and	the	Cloud

Development	Kit	(CDK)	are	three	frameworks	that	are	used	a	lot.	We	show	you	examples	of

how	to	create	infrastructure	with	all	three	of	them.

15.01.23 	 6	of	464



Why	Did	We	Bother	to	Write	This?

Why	did	we	bother	writing	another	book	about	AWS?

Working	with	AWS	both	felt	like	using	superpowers.	On	the	one	side,	you	can	build

applications	that	are	globally	available	without	caring	about	infrastructure.	On	the	other	side

having	the	skill	of	using	AWS	is	globally	in	demand.

We	want	to	pass	on	the	knowledge	of	both	points	as	well.	By	knowing	how	to	build	on	AWS	you

can	boost	your	career.	But	you	can	also	finally	work	on	your	SaaS	idea.

We’re	both	lucky	in	the	way	we	learned	AWS.	During	our	studies,	we	worked	in	companies

where	experienced	employees	could	teach	us	the	basics	directly	but	we’ve	also	had	the	freedom

to	learn	ourselves	and	make	mistakes.	Through	the	years,	we	could	harden	our	skills	and	gain	a

lot	of	insights	into	different	areas.	We’ve	seen	how	AWS	progressed,	but	the	fundamentals	still

remained	the	same.

We	saw	colleagues	and	friends	struggling	a	lot	with	learning	the	core	services	of	AWS	service

and	its	underlying	principles	and	how	to	apply	them	in	the	day-to-day	work.	The	typical

learning	path	is	to	get	started	with	certifications.	While	this	is	not	inherently	a	bad	way	it	is

often	not	enough.	Certificates	can	be	really	hard	to	master.	But	they	often	don’t	bring	enough

value	if	you	don’t	put	the	learnings	into	immediate	practice.	People	are	often	still	overwhelmed

by	which	services	they	should	use	in	which	situation	and	how	to	configure	them	accordingly.

This	is	the	main	motivation	of	this	book.

Learning	AWS	doesn’t	need	to	be	hard.	It	is	important	to	focus	on	the	basics	and	to	understand

them	well.	Once	this	is	done	all	new	services	or	features	can	be	understood	really	well.

Each	cloud	application	consists	of	the	same	set	of	services	and	principles.

We	both	never	thought	about	writing	a	book.	But	during	our	time	working,	and	especially	once

we	started	to	create	content	we	saw	the	need.	There	were	so	many	questions	and

misconceptions	that	we	wanted	to	create	a	resource	on	how	to	learn	AWS	for	the	real	world.

15.01.23 	 7	of	464



Who	Is	This	Book	For

This	book	is	for	everybody	who	wants	to	learn	about	the	fundamentals	of	AWS.	We	cover	the

core	building	blocks	of	AWS	and	Infrastructure	as	Code.

We	will	show	you	example	use	cases	and	configuration	options	for	each	service.	With	that,	you

are	ready	to	understand	how	to	apply	it	in	the	real	world.

Programming	experience	doesn’t	matter	for	this	book.	While	infrastructure	is	code	nowadays

you	don’t	need	to	know	any	specific	programming	language.	Programming	is	a	tool	you	will	use

to	build	on	the	cloud,	but	it	is	not	a	prerequisite	as	it	can	be	acquired	along	the	path.

This	book	is	also	for	everybody	who	did	some	certifications	like	the	Cloud	Practitioner	or

Solutions	Architect	Associate	but	is	still	overwhelmed	with	how	to	apply	the	learnings	in	real-

world	projects.

If	you’re	an	entrepreneur	who	wants	to	start	building	on	AWS	this	is	also	a	great	resource	for

you	on	how	to	get	started.

Or	if	you	are	the	technical	manager	of	a	team	and	somehow	lost	contact	with	AWS	and	its

configuration	options	you	can	brush	up	your	knowledge	fast	and	reduce	the	knowledge	gap	in

your	engineering	team.

If	you	are	working	with	AWS	for	quite	some	time	but	still	are	not	sure	about	some

configuration	basics	(like	when	to	use	long	&	when	to	use	short	polling),	this	is	also	for	you.

15.01.23 	 8	of	464



Who	Is	This	Book	Not	For

Honesty	is	important.	We	only	want	people	to	buy	this	book	if	they	can	profit	immensely	from

reading	it.

Firstly,	if	you’re	really	proficient	with	AWS	and	you’ve	worked	in	the	area	for	many	years,	likely

this	book	is	not	for	you.	We	don’t	require	previous	knowledge	about	basically	anything,	and

that’s	also	where	we	start.	By	exploring	every	core	service	as	deeply	as	possible,	we	want	to	give

aspiring	cloud	engineers	a	fundamental	tool	to	start	building	their	own	applications	or	simply

to	get	hired	in	this	area.

This	book	is	also	not	for	people	that	don’t	want	to	or	simply	won’t	directly	or	indirectly	work

with	AWS.	If	your	future	or	current	focus	is	Azure	or	Google	Cloud	Platform,	there’s	more	value

in	purchasing	another	book.	It	can	make	sense	to	understand	how	AWS	is	handling	things,	but

if	you	aim	to	work	with	another	cloud	provider,	learning	their	specifics	is	key.

Furthermore,	this	book	doesn’t	focus	on	passing	certifications.	You’ll	learn	the	principles	that

are	required	to	know	how	to	build	applications	from	scratch	and	how	to	apply	that	knowledge,

but	passing	certifications	often	require	very	deep	knowledge	that	goes	way	beyond.	This	book	is

a	good	tool	to	set	yourself	up	for	a	good	baseline	for	fundamental	certifications	like	the	Cloud

Practitioner	or	the	Solutions	Architect	Associate.	But	if	you	focus	on	passing	certifications,

doing	practice	exams,	or	courses	that	strictly	focus	on	exam	questions,	will	do	a	much	better

job.

15.01.23 	 9	of	464



15.01.23 	 24	of	464



15.01.23 	 43	of	464



15.01.23 	 95	of	464



Using	Lambda	to	Run	Code	without	Worrying	about

Infrastructure

Introduction

Amazon	EC2	enables	you	to	leave	managing	physical	servers	behind	and	just	focus	on	virtual

machines.	With	Lambda,	launched	back	in	2014,	AWS	took	this	one	step	further	by	completely

removing	customers’	liabilities	for	the	underlying	infrastructure.	The	only	thing	you	bring	is

the	actual	code	you	want	to	run	and	AWS	takes	care	of	provisioning	the	underlying	servers	and

containers	to	execute	it.

Lambda	Abstracts	Away	Infrastructure	Management,	but	It	Doesn’t	Come

without	Trade-Offs

If	you’ve	never	worked	with	Lambda	before,	this	is	maybe	the	most	important	chapter	as	the

included	information	doesn’t	seem	to	be	very	intuitive	in	the	first	place.	Let’s	have	a	look	at

how	Lambda	works	under	the	hood	and	which	trade-offs	we	have	to	face	due	to	its	on-demand

provisioning	of	infrastructure.	Also,	let’s	see	which	measures	we	can	use	to	slightly	mitigate	the

limitations	we	face.

Micro-Containers	in	the	Back	Which	Run	Your	Code

One	thing	that’s	often	missed	or	misunderstood	is:	Serverless	doesn’t	mean	that	there	are	no

servers.	These	are	just	abstracted	away	and	intransparent	for	the	application	developer.

For	an	incoming	request	to	your	Lambda	function,	AWS	will	either

1.	 internally	provision	a	micro-container	and	deploy	your	code	into	it	or

2.	 re-use	an	existing	container	that	hasn’t	been	de-provisioned	yet	and	is	not	already	busy

processing	another	request.

As	you’ve	probably	already	guessed,	the	first	option	comes	with	a	trade-off	as	resources	have	to

be	assigned	on	demand	which	takes	a	noticeable	amount	of	time.

Assigning	Resources	on-Demand	Takes	Time	-	What’s	Happening	in	a	Cold	Start

Let’s	take	a	deeper	look	at	the	first	scenario.	We're	not	surprised	that	there’s	a	certain	amount

of	bootstrapping	time	needed	until	our	code	is	executed.	The	process	of	preparing	Lambda's

environment	so	it	is	able	to	execute	your	code	is	called	cold	start.

15.01.23 	 96	of	464



Lambda	needs	to	download	your	function’s	code	and	start	a	new	micro-container	environment

that	will	then	receive	and	execute	it.	Afterward,	the	global	code	of	your	function	will	run.	This

is	everything	that’s	outside	of	your	handler	function.	This	globally	scoped	code	and	its

variables	will	be	kept	in	memory	for	the	time	that	this	micro-container	environment	is	not	de-

provisioned	by	AWS.	See	this	as	some	very	volatile	cache.

Lastly,	your	main	code	is	run	that’s	inside	your	handler	function.

Worth	noticing:	Even	though	it’s	part	of	the	launch	phase	until	your	target	code	finally	runs,

the	global	initialization	code	of	your	function	is	not	an	official	part	of	the	cold	start.

If	we	compare	this	to	traditional	container	approaches,	e.g.	running	Fargate	tasks	with	ECS,

we’ll	see	a	difference	in	the	average	response	times.	This	is	especially	noticeable	when	we	focus

on	the	slowest	5%	of	requests,	as	they	will	be	slower	in	Lambda	than	on	Fargate,	as	the	cold

starts	will	immensely	contribute	to	those.

A	Micro-Container	Is	Only	Able	to	Serve	One	Request	at	a	Time

Each	provisioned	Lambda	micro-container	is	only	able	to	process	one	request	at	a	time,	which

means:	even	if	there	are	multiple	execution	environments	already	provisioned	for	a	single

Lambda,	there	can	be	another	cold	start	if	all	of	them	are	currently	busy	handling

requests.

15.01.23 	 97	of	464



Looking	at	the	invocation	scenario	above	you	can	see	that	five	Lambda	micro-containers	were

initially	started	in	the	first	phase.	This	was	due	to	the	fact,	that	each	consecutive	request	came

in	before	another	container	has	finished.

The	first	re-use	did	only	happen	at	request	number	six,	as	micro-container	number	three

(counting	top-down)	has	finished	its	previous	request.

This	increases	the	difficulty	of	reducing	cold	starts,	especially	if	your	application	landscape	is

built	via	many	different	Lambda	functions,	maybe	even	requiring	mutual	synchronous

invocations.

Global	Code	Is	Kept	in	Memory	and	Is	Execute	with	High	Memory	and	Compute	Resources

If	we’re	looking	at	a	sample	handler	function,	we	can	see	that	it’s	possible	to	run	code	outside

of	the	handler	method	-	the	so-called	bootstrap	code.

bootstrapCoreFramework();

const	startTime	=	new	Date();

exports.handler	=	async	(event)	=>	{

				//	[...]

				executeWorkload();

}

The	results	of	this	code	execution	can	result	in	global	variables	that	are	kept	in	memory,

15.01.23 	 98	of	464



so	they	continue	to	exist	over	several	executions	of	this	single	micro-container.	It’s	only	lost

after	the	tear-down	of	the	Lambda	environment	was	executed.

In	our	example,	we’d	keep	the	results	of	the	bootstrap	of	our	core	framework	and	the	start	time

in	memory.	Those	will	only	vanish	when	our	function’s	container	will	be	de-provisioned	by

AWS.

This	is	not	the	only	great	thing	about	the	global	scope.	AWS	executes	the	code	outside	of	the

handler	method	with	a	high	memory	(and	therefore	with	that	high	vCPUs)	configuration,

regardless	of	what	you’ve	configured	for	your	function.	And	even	better:	the	first	10	seconds	of

the	execution	of	the	globally	scoped	code	is	not	charged.	This	is	not	some	shady	trick,	but

actually,	a	well-known	feature	to	adopt	the	usage	of	Lambda.

Make	use	of	this	and	bootstrap	as	much	as	possible	outside	the	handler	function	and	keep	a

global	context	while	your	function	is	running.

A	small	reminder:	Regularly	invoking	your	function	via	warm-up	requests.	This	will	increase

the	time	your	global	context	is	kept	as	the	container	lifetime	is	increased.	But	it’s	still

limited.	AWS	will	tear	down	your	function's	environment	after	a	certain	period	of	time,	even

if	your	function	is	invoked	all	the	time.

Your	Functions	Can	Be	Invoked	Synchronously	and	Asynchronously

There	are	two	methods	to	invoke	your	functions	code:

synchronous	or	blocking:	Lambda	executes	your	code	but	only	returns	after	the

execution	has	finished.	You’ll	receive	the	actual	response	that	is	returned	by	the	function.

An	example	would	be	a	simple	HTTP	API	that	is	built	via	API	Gateway,	Lambda,	and

DynamoDB.	The	browser	request	will	hit	the	API	Gateway	which	will	synchronously

invoke	the	Lambda	function.	The	Lambda	function	will	query	and	return	the	item	from

DynamoDB.	Only	after	that,	the	API	Gateway	will	return	the	result.

asynchronous:	Lambda	triggers	the	execution	of	your	code	but	immediately	returns.

You’ll	receive	a	message	about	the	successful	(or	unsuccessful,	e.g.	due	to	permission

issues)	invocation	of	your	function.	An	example	would	be	a	system	that	generates

15.01.23 	 99	of	464



thumbnails	via	S3	and	Lambda.	After	a	user	has	uploaded	an	image	to	S3,	they	will

immediately	receive	a	success	message.	S3	will	then	asynchronously	send	an	event

notification	to	the	Lambda	function	with	the	metadata	of	the	newly	created	object.	Only

then	Lambda	will	take	care	of	the	thumbnail	generation.

If	you’re	invoking	functions	from	another	place,	e.g.	another	Lambda	function,	the	invocation

type	depends	on	how	you	want	to	handle	results.	Synchronous	invocation	is	useful	when	you

need	to	retrieve	the	result	of	the	function	execution	immediately	and	use	it	in	your	application.

const	AWS	=	require('aws-sdk');

const	lambda	=	new	AWS.Lambda();

exports.handler	=	async	(event)	=>	{

				//	returns	immediately

				await	lambda.invoke({

						FunctionName:	'secondFunction',

						InvocationType:	'Event',

						Payload:	JSON.stringify({	message:	'Hello,	World!'	})

				}).promise();

		//	returns	after	'myFunction'	has	finished

				await	lambda.invoke({

						FunctionName:	'secondFunction',

						InvocationType:	'RequestResponse',

						Payload:	JSON.stringify({	message:	'Hello,	World!'	})

				}).promise();

}

15.01.23 	 100	of	464



Let’s	have	a	look	at	the	example	Lambda	function	firstFunction	above.	Its	sole	purpose	is

the	invocation	of	another	function	which	is	called	secondFunction.

If	we	look	at	the	sequence	diagram	above	for	the	invocation	of	function	firstFunction,	we

see	how	both	execute.	The	first	invocation	will	return	immediately,	even	though	the

computation	still	runs	inside	the	second	function.	Before	this	computation	can	finish,	the

second	invocation	hits	and	therefore	starts	another	micro-container	as	the	other	is	still	busy.

Now,	the	invocation	does	not	return	immediately	but	waits	until	the	computation	has	finished.

What’s	Necessary	to	Configure	to	Run	Your	Lambda	Functions

When	creating	a	Lambda	function	you	need	to	define	many	properties	of	the	environment.

Many	can	be	changed	afterward,	but	some	are	fixed	and	can’t	be	changed	once	the	function	is

created.	Let’s	explore	the	most	important	settings	and	configurations.

Choosing	the	Lambda	Runtime	and	CPU	Architecture

There’s	support	for	a	lot	of	runtimes	at	Lambda,	including	Node.js,	Python,	Java,	Ruby	and	Go.

Besides	deploying	your	function	as	a	ZIP	file,	you	have	to	option	to	provide	a	Docker	container

image.	It’s	also	possible	to	bring	your	own	runtime	to	execute	any	language	by	setting	the

functions	runtime	to	provided	and	either	packaging	your	runtime	in	your	deployment	package

or	putting	it	into	a	layer.

15.01.23 	 101	of	464



You	can	also	configure	if	you	want	your	functions	to	be	executed	by	an	x86	or	ARM/Graviton2

processor.	The	latter	one,	introduced	in	2021	for	AWS	Lambda,	offers	a	better	price

performance.	Citing	the	AWS	News	Blog:	“Run	Your	Functions	on	Arm	and	Get	Up	to	34%

Better	Price	Performance”.

All	of	the	environment	and	CPU	architecture	settings	can’t	be	changed	without	re-creating	your

function.

The	different	runtimes	vary	in	their	cold	start	times.	Scripted	languages	like	Python	and

Node.js	do	better	than	Java	currently,	but	the	latest	release	of	AWS	Lambda	SnapStart	could

change	that	drastically,	as	it	will	speed	up	cold	starts	by	an	order	of	magnitude	for	Java

functions.

Finding	the	Perfect	Memory	Size	Which	Also	Results	in	a	Corresponding	Number	of	vCPUs

The	memory	size	of	your	Lambda	function	does	not	only	determines	the	available	memory	but

also	the	assigned	vCPUs,	meaning	that	higher	settings	result	in	higher	computation	speeds.

You’ll	be	billed	for	GB	seconds,	so	more	memory	will	result	in	paying	more	per	executed

millisecond.

Timeouts	-	A	Hard	Execution	Time	Limit	for	Your	Function

A	single	Lambda	execution	can’t	run	forever.	It’s	up	to	you	to	define	a	timeout	of	up	to	15

minutes.	If	an	execution	hits	this	limit	it	will	be	forcefully	terminated,	interrupting	whatever

workload	it	is	executing	right	now.	The	function	will	return	an	error	to	the	invoking	service	if	it

was	synchronously	(blocking)	invoked.

Execution	Roles	&	Permissions	-	Attaching	Permissions	to	Run	Your	Functions

Lambda’s	execution	role	will	determine	the	permissions	it	receives	on	the	execution	level.

This	role	will	be	set	when	you	create	your	function:	either	an	existing	one	or	a	new	one.	The

execution	role	is	important	as	it	determines	all	permissions	that	your	Lambda	function	has

while	it	is	running.	If	your	function	needs	to	access	an	Amazon	S3	bucket	or	write	logs	to

Amazon	CloudWatch,	the	execution	role	must	have	the	appropriate	permissions.

As	with	other	services,	it	is	a	good	security	practice	to	create	an	execution	role	with	the	 least

privilege.	This	means	it	should	only	have	the	permissions	that	are	required	for	the	function	to

perform	its	intended	tasks.	This	helps	to	reduce	the	risk	of	unintended	access	to	resources	and

data.

15.01.23 	 102	of	464



Environment	Variables	For	Passing	Configurations	To	Your	Functions

Environment	variables	are	key-value	pairs	that	are	passed	to	your	Lambda	function.	Besides

your	custom	variables,	you’ll	find	some	reserved	ones	which	are	available	in	every	function.

Those	include,	among	others:

AWS_REGION-	the	region	where	your	function	resides.

X_AMZN_TRACE_ID	-	the	X-Ray	tracing	header.

AWS_LAMBDA_FUNCTION_VERSION	-	the	version	of	the	function	being	executed.

As	the	name	already	suggests,	environment	variables	are	perfect	to	configure	your	function	for

a	specific	environment.	You	don’t	need	to	hardcode	stage-specific	variables	into	the	function,

but	see	the	function	as	a	blueprint	and	pass	your	configuration	via	the	environment.

Each	of	your	variables	is	stored	in	the	function's	environment	and	can	be	accessed	from	your

code.	For	Node.js	you	can	use	the	process.env	object,	for	Java	it	will	be	the	

System.getenv()	method,	and	Python	will	provide	os.environ.

15.01.23 	 103	of	464

https://docs.aws.amazon.com/lambda/latest/dg/configuration-envvars.html


VPC	Integration	-	Accessing	Protected	Resources	within	VPCs	and	Controlling	Network
Activity

There	are	services	that	can	only	be	launched	inside	a	VPC,	including	ElastiCache.	If	you	need

to	access	such	a	service	from	Lambda,	you’ll	also	need	a	VPC	attachment	for	Lambda.	Other

use	cases	are	enhanced	security	requirements	like	restricting	outbound	traffic	from	your

functions.

Also,	running	your	functions	within	a	VPC	will	give	you	greater	control	over	the	network

environment.	If	you	have	functions	that	do	not	need	internet	access,	you	can	put	them	into	a

private	subnet.	This	will	restrict	them	from	making	outgoing	calls	to	the	internet	which	will

immensely	increase	security.

But	there	are	considerations	when	using	VPCs.	Even	though	AWS	improved	this	drastically

with	the	integration	of	AWS	Hyperplane,	a	VPC	integration	will	increase	your	function’s	cold

start	times.	Additionally,	VPC	integration	can	increase	the	costs	as	you’ll	be	charged	for	data

transfer	to	other	resources	in	your	VPC.

Natively	Invoke	Lambda	via	Different	AWS	Services	via	Triggers

Lambda	is	natively	integrated	with	a	lot	of	other	services	via	triggers,	meaning	you’re	able	to

launch	Lambda	functions	based	on	events	that	are	fired	from	other	services.

Prominent	examples	are:

Integration	with	API	Gateway	to	respond	to	HTTP	requests .

Lifecycle	events	at	S3,	e.g.	launching	a	Lambda	function	if	an	object	was	created	in	a

specific	path	of	your	bucket.

Consuming	events	from	an	SQS	queue.

Scheduling	functions	based	on	EventBridge	rules.

Triggers	are	a	major	feature	to	build	reliable	event-driven	architectures	that	are	also	able	to

recover	in	case	of	outages	and	errors.

15.01.23 	 104	of	464

https://docs.aws.amazon.com/lambda/latest/dg/services-apigateway-tutorial.html
https://docs.aws.amazon.com/lambda/latest/dg/with-s3.html
https://docs.aws.amazon.com/lambda/latest/dg/with-sqs.html
https://docs.aws.amazon.com/lambda/latest/dg/services-cloudwatchevents.html


Triggering	Follow-Ups	for	Successful	or	Unsuccessful	Invocations	of	Functions	via
Destinations

The	upside	of	not	having	to	wait	for	responses	on	asynchronous	invocation	is	also	the

downside:	you	can’t	immediately	decide	if	the	execution	didn’t	result	in	any	errors.	That’s	why

Lambda	offers	destinations	so	you	can	react	to	successful	or	faulty	executions.

In	our	example,	failed	invocations	or	invocations	that	can’t	be	processed	are	forwarded	to	an

SQS	Dead-Letter-Queue.	Later	on,	this	queue	can	be	used	to	investigate	events	that	failed	and

find	out	the	reason	for	the	failure.	Otherwise,	we	can	poll	events	from	the	queue	from	another

function	to	trigger	a	reprocessing	at	a	later	point	in	time.

Code	Signing	to	Ensure	the	Integrity	of	Deployment	Packages

Your	Lambda	functions	are	executed	on	hardened	systems,	but	how	do	you	ensure	your	code

was	never	tampered	with?	With	AWS	Signer	and	code	signing,	you	can	create	signing	profiles

to	enforce	that	only	code	by	trusted	publishers	can	be	deployed	to	your	functions.

15.01.23 	 105	of	464



Using	Unique	Pointers	to	Functions	via	Aliases	and	Versioning

You	can	have	different	versions	of	your	function	in	parallel.	Maybe	you	want	to	test	some	code

changes	without	affecting	the	currently	stable	version	on	your	staging	environment.

When	publishing	a	version	you’ll	get	another	version	number	which	can	be	used	to	invoke	your

function	via	the	qualified	ARN:

arn:aws:lambda:us-east-1:012345678901:function:myfunction:17

Additionally,	you	can	create	an	alias	for	each	of	your	versions.	An	alias	acts	as	a	pointer	to	your

function.	The	benefit	of	using	aliases	instead	of	the	qualified	ARNs	is	that	you	can	use	them

with	event	source	mappings	without	having	to	adapt	each	of	the	mappings	after	you’ve

published	a	new	version.	You’ll	only	need	to	update	a	single	resource:	the	alias	itself.

Reserved	and	Provisioned	Concurrency	to	Guarantee	Capacities	and	Reduce	Cold

Starts

There	are	two	different	features	that	help	you	to	manage	the	performance	and	scalability	of

your	functions	further	than	just	assigning	higher	memory	settings:	reserved	and

provisioned	concurrency.

Both	can	help	you	improve	the	performance	and	scalability	of	your	functions,	but	they	are	used

for	different	purposes.	Reserved	concurrency	is	used	to	ensure	that	a	certain	number	of

instances	of	your	function	are	always	available	to	handle	requests,	while	provisioned

15.01.23 	 106	of	464



concurrency	is	used	to	keep	instances	pre-warmed	in	anticipation	of	traffic.

Reserved	Concurrency	for	Guaranteeing	a	Functions	Concurrency	Capacity

The	default	concurrent	execution	Lambda	for	an	account	is	1000.	This	means	it’s	not	possible

to	have	more	than	1000	Lambda	functions	executed	in	parallel.	This	also	implies	that	it’s

possible	to	run	a	huge	number	of	functions	in	parallel,	maybe	by	accident	due	to	recursion	with

missing	exit	conditions	or	similar	errors.

For	restricting	the	maximum	number	of	parallel	execution	you	can	use	reserved	concurrency

for	your	function.	Each	reserved	concurrency	will	be	subtracted	from	your	account	limits	so

that	AWS	can	guarantee	that	this	scale	of	parallel	executions	is	always	possible	for	these

specific	functions.	It	also	ensures	that	there’s	never	a	chance	to	run	more	than	that	number	in

parallel.

If	a	function	didn’t	declare	a	value	for	reserved	concurrency,	it	will	use	the	unreserved

concurrency	capacity	that	is	left	in	your	account	which	could	probably	be	completely	consumed

under	certain	circumstances.

Provisioned	Concurrency	for	Reducing	Cold	Starts

Regardless	of	the	strategies	you’re	using	of	keeping	Lambda	functions	warm	via	strategic	health

checks	or	your	level	of	permanent	requests	per	second,	your	micro-containers	will	be	de-

provisioned	at	some	time.

The	only	way	to	get	around	this	is	to	use	provisioned	capacity.	AWS	will	keep	a	certain	number

of	Lambda	environments	provisioned	so	they	are	always	ready	for	execution	for	incoming

requests.

This	comes	with	significantly	higher	pricing	and	also	increased	times	for	deployments	(up	from

a	matter	of	seconds	to	a	few	minutes).

Layers	Enable	You	to	Externalize	Your	Dependencies

Building	extensive	business	logic	often	doesn’t	require	you	to	reinvent	the	wheel,	but	to	make

use	of	existing	libraries.	This	mostly	results	in	having	more	code	in	dependencies	than	in	actual

self-implemented	business	logic	which	will	slow	down	packaging	and	deployments.

15.01.23 	 107	of	464



Also,	you’ll	need	to	package	dependencies	for	all	of	your	Lambda	functions	individually	as	they

need	to	be	included	in	the	deployment	package	-	even	in	the	case	that	most	of	your	function	do

rely	on	the	same	packages.

The	solution	for	this	is	Lambda	Layers.	You	can	create	a	versioned	Layer	including	the

dependencies	you	need	for	your	Lambda	function.	Afterward,	you	can	attach	one	or	several

functions	to	the	same	layer.	All	of	them	will	get	access	to	the	included	dependencies.

New	function	deployments	will	only	require	you	to	package	your	own	code	which	will

drastically	increase	packaging	and	deployment	times,	as	you	likely	only	have	a	few	kBytes	of

code	left.

There’s	a	deployment	package	size	limitation,	which	includes	the	size	of	referenced

layers	of	50	MB	for	zipped	files	and	direct	upload	and	250	MB	for	the	unzipped	archive.

15.01.23 	 108	of	464



Make	sure	you	package	your	dependencies	in	the	right	folder.	For	example,	lambda

expects	your	node_modules	to	be	inside	the	top-level	folder	nodejs.

Monitoring	Your	Functions	with	CloudWatch	to	Detect	Issues

As	with	other	services,	Lambda	integrates	with	CloudWatch	by	default	and	submits	a	lot	of

useful	metrics	without	any	further	configurations.	CloudWatch	also	automatically	creates

monitoring	graphs	for	any	of	these	metrics	to	visualize	your	usage.

The	default	metrics	include:

Invocations	–	The	number	of	times	that	the	function	was	invoked.

Duration	–	The	average,	minimum,	and	maximum	amount	of	time	your	function	code

spends	processing	an	event.

Error	count	and	success	rate	(%)	–	The	number	of	errors	and	the	percentage	of

invocations	that	were	completed	without	error.

Throttles	–	The	number	of	times	that	an	invocation	failed	due	to	concurrency	limits.

IteratorAge	–	For	stream	event	sources,	the	age	of	the	last	item	in	the	batch	when

Lambda	received	it	and	invoked	the	function.

Async	delivery	failures	–	The	number	of	errors	that	occurred	when	Lambda	attempted

to	write	to	a	destination	or	dead-letter	queue.

Concurrent	executions	–	The	number	of	function	instances	that	are	processing	events.

Any	log	messages	you	write	to	the	console	can	also	be	submitted	to	and	ingested	by

CloudWatch	if	your	Lambda’s	execution	role	has	sufficient	permissions.

logs:CreateLogGroup

logs:CreateLogStream

logs:PutLogEvents

The	first	permission	is	only	necessary	if	you	don’t	create	the	log	group	yourself.	If	you	create

one	yourself,	you	can	easily	define	a	retention	policy	so	that	log	messages	expire	after	a	defined

period	of	time.	This	helps	to	avoid	unnecessary	costs	for	logs	that	are	not	in	use	anymore.

15.01.23 	 109	of	464



Going	into	Practice	-	Creating	Our	First	Serverless	Project

We’ve	gone	through	the	most	important	fundamentals	of	Lambda.	Let’s	jump	into	the	doing

and	create	our	first,	own	small	Lambda	project.

We’ll	divide	this	into	a	journey	of	four	major	steps:

1.	 Creating	a	simple	Node.js	function.	We’ll	create	a	small	function,	and	adapt	and

deploy	code	changes	within	the	AWS	management	console.	We’ll	also	test	our	function

here	via	our	own	test	events.

2.	 Adding	external	dependencies.	We’ll	add	Axios	as	a	dependency	so	we	can	execute

HTTP	calls	in	a	more	convenient	way.

3.	 Externalizing	dependencies	into	a	Lambda	Layer.	Dependencies	update	rather

rarely	compared	to	our	own	code.	Let’s	extract	our	new	dependency	into	a	Lambda	Layer

so	we	don’t	need	to	package	and	deploy	them	for	each	code	update.

4.	 Invoking	another	Lambda	function.	Let’s	create	another	function	that	we	can	invoke

from	our	initial	function	to	see	the	differences	between	synchronous	and	asynchronous

invocations.

Creating	a	Simple	Node.js	Function

Jump	into	the	AWS	Lambda	console	and	click	on	Create	function.	We	only	need	to	define

a	name,	select	our	target	architecture,	and	chose	which	runtime	we	want	to	use.	For	our

example,	we’ll	go	with	Node.js.

15.01.23 	 110	of	464


	AWS Fundamentals
	Introduction
	About the Scope of This Book
	Why Did We Bother to Write This?
	Who Is This Book For
	Who Is This Book Not For

	Getting Started
	Creating Your Own AWS Account
	Account Security Key Concepts and Best Practices
	Enabling Multi-Factor Authentication to Have Another Layer of Security
	Staying Away from Using Your Root Accounts Credentials for Your Daily Business to Reduce Risks
	AWS IAM Puts You in Full Control of the Security of Every Aspect of Your Account by Offering Users, Roles, and Groups
	Your Account Is a Closed Bucket of Resources
	The Root User Is the Owner of Your Account
	IAM Users for Tailor-Made Permissions to Fulfill Daily Tasks
	Groups to Easily Manage Permissions for Small or Large a Set of Users


	Avoiding Cost Surprises
	Experimenting without Any Costs by Making Use of the AWS Free Tier
	Exploring Your Cost Structure with the Billing Dashboard
	Getting a Forecast about Your Costs and Get Alerted on Exceeding Thresholds
	Further Drilling down Costs with the Cost Explorer and Cost Allocation Tags
	Sleeping Better by Restricting IAM Permissions To Launch Expensive Resources

	Understanding the Shared Responsibility Model
	About going Serverless and Cloud-Native

	AWS Core Building Blocks for all Applications
	Compute
	Database and Storage
	Messaging
	Networking
	Continuous Integration and Delivery
	Observability
	AWS IAM for Controlling Access to Your Account and Its Resources
	Introduction
	Amazon Resource Identifiers: How Resources Are Identified in a Uniquely Manner
	Users, Roles, and Groups Are the Three Important Identity Concepts
	User: A Person or Service That Interacts with One or Several AWS Accounts
	Group: A Collection of Users to Easily Manage Several Users
	Role: An Identity with a Permission Set That Can Be Assumed
	Issuing Temporary Credentials to Enforce Time-Limited Access

	Controlling Access to Your Resources via Policies
	Policies for Granting Permissions to Access Your Resources
	Creating and Testing Policies with Tool Support

	Use Cases for AWS IAM
	Creating Users with Restricted Permissions That Are Managed via a Group
	Creating an S3 Bucket That’s Only Accessible for Users with Activated MFA

	Tips & Tricks for the Real World
	Final Words

	Compute
	Launching Virtual Machines in the Cloud for Any Workload with EC2
	Introduction
	Fundamentals on Working with EC2
	Configuring an Instance for Your Needs
	Launching Your Instance and Connecting to It
	Configuring Your Network and Securing Your Instance
	Thinking Ahead to save Money by Diving into the Different Purchase Options
	Monitoring and Troubleshooting Your Instances and Configurations
	Using the AWS Marketplace to Get Pre-Configured AMIs for Almost Any Requirement
	Going One Step Further: Creating Auto-Scaling Rules to Adapt to Changing Loads
	Use Cases for EC2 Instances
	Tips & Tricks for the Real World
	Final Words

	Running and Orchestrating Containers with ECS and Fargate
	Introduction
	Understanding the Key Terms of ECS
	Launch Types - The Way in Which Tasks Are Run and Managed
	Task Scheduling - Running Your Tasks
	Persisting Your Images at the Elastic Container Registry
	Creating Our First ECS Service That Runs a Node.js Application in Fargate
	Securing Your Tasks and Clusters
	Deploying Updated Task Definitions
	Monitoring Key Metrics of Your Tasks and Clusters with CloudWatch
	Automatically Scaling Your Containers Based on Traffic Demands
	The Unlimited Use Cases of Container Services
	Tips & Tricks for the Real World
	Final Words

	Using Lambda to Run Code without Worrying about Infrastructure
	Introduction
	Lambda Abstracts Away Infrastructure Management, but It Doesn’t Come without Trade-Offs
	What’s Necessary to Configure to Run Your Lambda Functions
	Reserved and Provisioned Concurrency to Guarantee Capacities and Reduce Cold Starts
	Layers Enable You to Externalize Your Dependencies
	Monitoring Your Functions with CloudWatch to Detect Issues
	Going into Practice - Creating Our First Serverless Project
	Exposing Your Function to the Internet with Function URLs
	Attaching a Shared Network Storage with EFS
	Running Code as Close as Possible to Clients with Lambda@Edge
	Lambda Is Charged Based on Memory Settings, Execution Times, and Ephemeral Storage
	Lambda Comes with Hard and Soft Quotas and Limits
	A Deep Dive into Great Lambda Use Cases
	Tips and Tricks for the Real World
	How to Determine If Lambda and the Serverless Approach Is the Right Fit
	Final Words


	Database & Storage
	Fully-Managed SQL Databases with RDS
	Introduction
	Create Your First Database With the Management Console
	RDS Supports Six Different Database Engines
	Your Database Can Have Different States from Available to Deleting
	Use the Multi-AZ Feature to Recover From Failures in Availability Zones
	Read Replicas Allow You to Increase Performance for Read-Heavy Workloads Across Regions
	Automate Backups with RDS
	Encrypt Your Data Directly on the Server
	RDS Supports Scaling Its Storage Automatically but Scaling the Instance Class Requires Manual Work
	RDS Is Priced on the Instance Class & How Long the Instance Runs
	Use Cases from the Real World
	Tips for the Real World
	Final Words

	Building Highly-Scalable Applications in a True Serverless Way With DynamoDB
	Introduction
	Understanding DynamoDB’s Key Concepts
	DynamoDB Is a NoSQL Database. It Saves Your Data in a JSON Format and Doesn’t Enforce a Schema
	Creating a Table
	Primary Keys Identify an Item Uniquely. They Can Be a Simple or a Composite Key
	Exploring the Different Data Types: Scalar, Document, or Set
	You Can Use Scans or Queries to Retrieve Items. Queries Are Cheaper and Faster
	Extending Your Query Capabilities with Indexes
	Adding, Removing, or Updating Items in DynamoDB
	DynamoDB’s Capacity Modes: On-Demand for Unpredictable Traffic - Provisioned for Predictable Traffic
	Global Tables Create Synchronized Tables Across Regions
	Backing-Up Data With Its Built-in Feature Set
	DynamoDB Streams To Trigger Lambda Functions On Changes
	Time-To-Live To Automatically Expire Items
	DynamoDB Encrypts Data at Rest on the Server
	Use Cases from the Real World
	Tips for the Real World
	Final Words

	S3 Is a Secure and Highly Available Object Storage
	Introduction
	Buckets and Objects Are at the Core of S3
	Storage Classes - Save Money for Longer Retrieval Times
	Lifecycle Policies Send Objects Automatically to a Different Storage Class
	Event Notifications - Send Events on S3 Changes to SQS or Lambda
	Server Access Logging - Log All Access to Your Bucket
	CloudTrail Data Events Give You a Granular View of API Calls in Your Bucket
	Bucket Policies Grant Permissions to Your Bucket and Objects
	Batch Operations Lets You save Money by Uploading Objects in Batches
	Object Locks - Make Sure Your Data Hasn’t Been Tampered With
	Keeping a Change History of Your Object with Versioning
	Making Your Bucket Public
	Pricing in S3 Is Based on Storage and API Calls
	The Wide Fields Of Different Use Cases For S3
	Tips for the Real World
	Final Words


	Messaging
	Using Message Queues with SQS
	Introduction
	SQS Is Poll-Based And Not Push Based
	SQS Offers Standard and FIFO Queues
	Use Dead-Letter-Queue for Handling Failures & Retries
	Configuring Polling Methods, Timeouts, and Delays
	Three Common Message Lifecycle Within SQS Are the Happy Path, Consumer Failures, and Too-Short Retention Periods
	Encrypt Your Message on the Server Side
	SQS Quotas Like Batch Size, Message Size, and Messages In-Flight Are Important to Know
	SQS Bills You on the Number of Requests
	Use Cases - Build Asynchronous Tasks With SQS
	Tips for the Real World
	Final Words

	SNS to Build Highly-Scalable Pub/Sub Systems
	Introduction
	SNS Is a Pub/sub-Service - Consumers Subscribe to Topics and Producers Publish Messages via Topics
	Destinations in SNS Are Either Application-Based or Person-Based
	The Fanout Pattern Allows Distributing One Message to a Variety of Services
	Secure Your Access to Topics with IAM Topic Policies
	Encrypt Your Messages with SNS Encryption
	Choose Your Topic Type - Standard for High Throughput or FIFO for Message Ordering
	Build Message Archives with Kinesis Firehose
	Message Filtering Sends Only a Subset of Messages to Subscribers
	Delivery Retries Define How Retries & Error Handling Is Working for Server-Side Errors
	Dead Letter Queues save All Failed Messages
	Pricing Is Based on the Number of Requests
	Typical Use Cases Are CloudWatch Alarms and in-App Notifications
	Tips for the Real World
	Final Words

	Building an Event-Driven Architecture with AWS EventBridge
	Introduction
	Event-Driven Architectures Decouple Producer and Consumer of Events
	Event Bus, Event Rules, and Targets Are the Main Components of EventBridge
	Event Sources Are Either Internal AWS Events, Custom Events, or Partner Events
	Schedule Tasks with the EventBridge Scheduler
	Archive & Replay Lets You save All Events and Replay Them Back to Your Event Bus When Needed
	Schema Bindings Define the Objects & Attributes of Your Events
	Handle Failures by Using DLQs for Target Delivery
	The Subscription Pattern Defines That Rules Should Belong to One Consumer
	EventBridge Encrypts Your Data at Rest, IAM Secures All Services
	There Are Quotas around Event Buses, Publishing Events per Second, and Many More
	Pricing Is Usage-Based. Internal AWS Events Are Free, You Only Pay for Custom Events.
	Three Example Use Cases for EventBridge
	Tips for the Real World
	Final Words


	Networking
	Exposing Your Application’s Endpoints to the Internet via API Gateway
	Introduction
	Rest, HTTP and WebSockets Are the Three Different Gateway Types
	A Request Passes through Different Pre and Post-Integration Steps
	API Endpoints Contain Routes and Methods and Lead to Integrations
	IAM Policies, Authorizers, Certificates, and Usage Plans to Protect or Restrict Access to Your Endpoints
	Integrations - Defining the Backends You Want to Invoke
	Validating Your Requests before They Reach the Invocation Target
	Transforming Your Data to Meet the Integrations Expectations
	Handling Invocation and Validation Errors
	Dealing with Cross-Origin Requests or “Not Fearing CORS”
	Deploying Your Endpoints to the Internet
	Caching Your Requests to Decrease Latencies
	Monitoring APIs to Immediately Get Aware of Issues
	Building Real-Time Communication Applications with WebSockets
	What Costs to Expect with the Different API Gateway Types
	Use Cases for AWS API Gateway
	Tips and Tricks for the Real World
	Final Words

	Making Your Applications Highly Available with Route 53
	Introduction
	Understanding the Fundamentals of the Domain Name Service
	Setting up Route 53 as Your DNS
	Understanding Hosted Zones
	Routing Traffic to Your Resources
	Choosing the Right Routing Policy
	Building Health Checks and Setting up Failovers to Avoid Downtimes on Region Issues
	What Costs to Expect with Route 53
	The Use Cases For Route 53
	Tips & Tricks for the Real World
	Final Words

	Isolating and Securing Your Instances and Resources with VPC
	Introduction
	Why Would or Do You Need to Use a VPC?
	Getting into the Networking Fundamentals to Understand How VPCs Work
	Virtual Private Clouds
	Slicing Your Network into Isolated Parts via Subnets
	Adding Layers of Security with Network Access Control Lists and Security Groups
	Using Gateways for Outbound Internet Access in Your Network
	Routing Requests in Your Network via Route Tables
	Monitoring the Traffic in Your Network
	Bringing Different VPCs Together with Peering and Sharing
	The Various Use Cases for VPCs
	Tips and Tricks for the Real World
	Final Words

	Using CloudFront to Distribute Your Content around the Globe
	Introduction
	Using CloudFront Enables You to Deliver Content in an Efficient, Reliable, and Fast Way
	A Globally Distributed Network of Edge Locations
	Choosing Where to Retrieve Your Content by Defining Origins
	Controlling the Cache Behaviors within Your Edge Locations
	Running Code on the Edge to Implement Custom Business Logic
	Securing and Restricting Access to Your CloudFront Distributions and Origins
	Redundancy and Failure-Safety via Origin Failovers
	Creating Our First Distribution: Serving a Static Website from S3 That’s Protected via a CloudFront Function
	Expected Costs with CloudFront
	Monitoring Your Distributions with CloudWatch
	The Manifold Use Cases of CloudFront
	Tips and Tricks for the Real World
	Final Words


	Continuous Integration & Delivery
	Creating a Reliable Continuous Delivery Process with CodeBuild & CodePipeline
	Introduction
	Understanding the Key Terms of CodeBuild and CodePipeline
	Monitoring Your Delivery Pipeline to Quickly Get Aware of Issues
	Securing Your Pipelines with AWS IAM, VPC Integrations, and Encryption
	Getting an Understanding of How CodeBuild and CodePipeline Is Billed
	Advantages and Downsides
	Use Cases For AWS CodeBuild and CodePipeline
	Tips & Tricks for the Real World
	Final Words


	Observability
	Observing All Your AWS Services with CloudWatch
	Introduction
	CloudWatch Logs Is the Centralized Logging Place for All AWS Services
	CloudWatch Metrics Stores Metrics about Your Services
	CloudWatch Alarms Notify You on Pre-Defined Thresholds like CPU Usage or Errors
	X-Ray Gives You the Ability to Trace User Requests Throughout Your Distributed System
	CloudWatch Synthetics Lets You Test Web Applications in Regular Intervals
	CloudWatch Is Priced Based on Ingest and Storage
	Use Cases for CloudWatch
	Tips for the Real World
	Final Words



	Define & Deploy Your Cloud Infrastructure with Infrastructure-As-Code
	Application Code Is Infrastructure Code
	What Is Infrastructure as Code?
	History of IaC
	Manual - Clicking in the AWS Management Console
	Scripted - Provision AWS Resources with the CLI
	Declarative - Describe the Infrastructure You Need
	Componentized - Use Your Programming Language to Build Abstractions

	CloudFormation Is the Underlying Service for Provisioning Your Infrastructure
	Introduction
	CloudFormation Concepts - Templates, Stacks, Change Sets
	Templates Define All Resources CloudFormation Should Provision
	Stacks Are Deployable Units
	Change Sets Only Deploy Changes to Your Current Infrastructure

	Define Resources, Outputs, Parameters, and Variables in Templates
	Template Version
	Description
	Resources Contain All Resources You Want to Provision
	With Outputs, You Can Print Properties of Your Created Resources
	Parameters Allow You to Add Information before Deploying Your Stack

	Let’s Deploy
	Management Console
	Deploy with AWS CLI

	CloudFormation Is Free
	Final Words

	Using Your Favorite Programming Language with CDK to Build Cloud Apps
	Introduction
	Supported Programming Languages Are TypeScript, Python, Go, C#, and Java
	Benefits of CDK
	The IDE Improves the Developer Experience
	CDK Wants You to Build Abstractions
	CDK Still Follows a Declarative Approach
	CDK Is Stable Because AWS Develops It
	CDK Uses CloudFormation

	CDK Has the Main Concepts of Apps, Stacks, and Constructs
	Constructs Define the Actual Cloud Resources
	Stacks - Deployable Units
	Apps - Bundle Multiple Stacks Together

	CDK CLI - Initialise, Synthesize, and Deploy Your App
	cdk init
	cdk synth
	cdk bootstrap
	cdk deploy
	cdk watch
	cdk diff
	cdk destroy

	CDK Makes Working with IAM Simple
	Construct Hub Allows You to Share Constructs Globally
	Final Words

	Leveraging the Serverless Framework to Build Lambda-Powered Apps in Minutes
	Introduction
	Serverless Framework Comes with Different Providers, Formats to Define Your Infrastructure and a Huge Set of Templates
	The Different Providers & the Command Line Interface to Interact with Serverless and Your Cloud Provider
	Describing All Your Infrastructure in the YAML Format
	There Are Alternative Configurations Formats
	Making Use of the Starter Templates for Beginning with a Solid Base

	The Mastery of Abstraction in Every Aspect
	Services - A Dedicated Unit of Configuration
	Functions - Your Compute Layer Running on AWS Lambda
	Packaging Your Deployment Units
	Adding Triggers for Your Functions
	Custom Resources That Are Defined in Plain CloudFormation
	Custom Variables for Managing Configurations for Different Stages
	Deploying Your Infrastructure and Code to AWS
	Externalizing Your Dependencies via Layers

	Extending the Capabilities with Official and Community Plugins
	Marrying with Other Infrastructure-as-Code Tools like Terraform
	Final words


	Credits & Acknowledgements
	About the Authors

